Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Sci Rep ; 14(1): 4409, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388563

RESUMO

Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer.


Assuntos
Cicloexilaminas , Ferroptose , Neoplasias Pancreáticas , Fenilenodiaminas , Camundongos , Animais , Gencitabina , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/metabolismo , Ácido Linoleico , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia
2.
Cancer Med ; 13(2): e6987, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38334464

RESUMO

INTRODUCTION: Triple-negative breast cancer (TNBC), recognized as the most heterogeneous type of breast cancer (BC), exhibits a worse prognosis than other subtypes. Mitochondria dynamics play a vital role as mediators in tumorigenesis by adjusting to the cell microenvironments. However, the relationship between mitochondrial dynamics and metabophenotype exhibits discrepancies and divergence across various research and BC models. Therefore, this study aims to explore the role of mitochondrial dynamics in TNBC drug resistance and tumorigenesis. METHODS: The Wst-8 test was conducted to assess doxorubicin sensitivity in HCC38, MDA-MB-231 (TNBC), and MCF-7 (luminal). Confocal microscopy and FACS were used to quantify the mitochondrial membrane potential (ΔφM), mitophagy, and reactive oxygen species (ROS) production. Agilent Seahorse XF Analyzer was utilized to measure metabolic characteristics. Dynamin-related protein-1 (DRP1), Parkin, and p62 immunohistochemistry staining were performed using samples from 107 primary patients with BC before and after neoadjuvant chemotherapy (NAC). RESULTS: MDA-MB-231, a TNBC cell line with reduced sensitivity to doxorubicin, reduced ΔφM, and enhanced mitophagy to maintain ROS production through oxidative phosphorylation (OXPHOS)-based metabolism. HCC38, a doxorubicin-sensitive cell line, exhibited no alterations in ΔφM or mitophagy. However, it demonstrated an increase in ROS production and glycolysis. Clinicopathological studies revealed that pretreatment (before NAC) expression of DRP1 was significant in TNBC, as was pretreatment expression of Parkin in the hormone receptor-negative group. Furthermore, low p62 levels seem to be a risk factor for recurrence-free survival. CONCLUSION: Our findings indicated that the interplay between mitophagy, linked to a worse clinical prognosis, and OXPHOS metabolism promoted chemotherapy resistance in TNBC. Mitochondrial fission is prevalent in TNBC. These findings suggest that targeting the unique mitochondrial metabolism and dynamics in TNBC may offer a novel therapeutic strategy for patients with TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Dinâmica Mitocondrial , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Ubiquitina-Proteína Ligases/genética , Carcinogênese , Microambiente Tumoral
3.
Adv Mater ; 36(15): e2309864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38213132

RESUMO

Flexible imagers are currently under intensive development as versatile optical sensor arrays, designed to capture images of surfaces and internals, irrespective of their shape. A significant challenge in developing flexible imagers is extending their detection capabilities to encompass a broad spectrum of infrared light, particularly terahertz (THz) light at room temperature. This advancement is crucial for thermal and biochemical applications. In this study, a flexible infrared imager is designed using uncooled carbon nanotube (CNT) sensors and organic circuits. The CNT sensors, fabricated on ultrathin 2.4 µm substrates, demonstrate enhanced sensitivity across a wide infrared range, spanning from near-infrared to THz wavelengths. Moreover, they retain their characteristics under bending and crumpling. The design incorporates light-shielded organic transistors and circuits, functioning reliably under light irradiation, and amplifies THz detection signals by a factor of 10. The integration of both CNT sensors and shielded organic transistors into an 8 × 8 active-sensor matrix within the imager enables sequential infrared imaging and nondestructive assessment for heat sources and in-liquid chemicals through wireless communication systems. The proposed imager, offering unique functionality, shows promise for applications in biochemical analysis and soft robotics.

4.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256064

RESUMO

Flavonoids have garnered attention because of their beneficial bioactivities. However, some flavonoids reportedly interact with drugs via transporters and may induce adverse drug reactions. This study investigated the effects of food ingredients on organic anion-transporting polypeptide (OATP) 4C1, which handles uremic toxins and some drugs, to understand the safety profile of food ingredients in renal drug excretion. Twenty-eight food ingredients, including flavonoids, were screened. We used ascorbic acid (AA) to prevent curcumin oxidative degradation in our method. Twelve compounds, including apigenin, daidzein, fisetin, genistein, isorhamnetin, kaempferol, luteolin, morin, quercetin, curcumin, resveratrol, and ellagic acid, altered OATP4C1-mediated transport. Kaempferol and curcumin strongly inhibited OATP4C1, and the Ki values of kaempferol (AA(-)), curcumin (AA(-)), and curcumin (AA(+)) were 25.1, 52.2, and 23.5 µM, respectively. The kinetic analysis revealed that these compounds affected OATP4C1 transport in a competitive manner. Antioxidant supplementation was determined to benefit transporter interaction studies investigating the effects of curcumin because the concentration-dependent curve evidently shifted in the presence of AA. In this study, we elucidated the food-drug interaction via OATP4C1 and indicated the utility of antioxidant usage. Our findings will provide essential information regarding food-drug interactions for both clinical practice and the commercial development of supplements.


Assuntos
Curcumina , Ingredientes de Alimentos , Antioxidantes/farmacologia , Curcumina/farmacologia , Quempferóis , Cinética , Ácido Ascórbico , Flavonoides , Peptídeos , Ânions
5.
NPJ Aging ; 9(1): 20, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528117

RESUMO

Mitochonic acid-5 ameliorates the pathophysiology of human mitochondrial-disease fibroblasts and Caenorhabditis elegans Duchenne muscular dystrophy and Parkinson's disease models. Here, we found that 10 µM MA-5 attenuates the age-related decline in motor performance, loss of muscle mitochondria, and degeneration of dopaminergic neurons associated with mitochondrial Ca2+ overload in C. elegans. These findings suggest that MA-5 may act as an anti-aging agent against a wide range of neuromuscular dysfunctions in metazoans.

6.
Sci Rep ; 13(1): 12508, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532799

RESUMO

Sensitive biomarkers can enhance the diagnosis, prognosis, and surveillance of chronic kidney disease (CKD), such as diabetic kidney disease (DKD). Plasma growth differentiation factor 15 (GDF15) levels are a novel biomarker for mitochondria-associated diseases; however, it may not be a useful indicator for CKD as its levels increase with declining renal function. This study explores urinary GDF15's potential as a marker for CKD. The plasma and urinary GDF15 as well as 15 uremic toxins were measured in 103 patients with CKD. The relationship between the urinary GDF15-creatinine ratio and the uremic toxins and other clinical characteristics was investigated. Urinary GDF15-creatinine ratios were less related to renal function and uremic toxin levels compared to plasma GDF15. Additionally, the ratios were significantly higher in patients with CKD patients with diabetes (p = 0.0012) and reduced with statin treatment. In a different retrospective DKD cohort study (U-CARE, n = 342), multiple and logistic regression analyses revealed that the baseline urinary GDF15-creatinine ratios predicted a decline in estimated glomerular filtration rate (eGFR) over 2 years. Compared to the plasma GDF15 level, the urinary GDF15-creatinine ratio is less dependent on renal function and sensitively fluctuates with diabetes and statin treatment. It may serve as a good prognostic marker for renal function decline in patients with DKD similar to the urine albumin-creatinine ratio.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Inibidores de Hidroximetilglutaril-CoA Redutases , Insuficiência Renal Crônica , Humanos , Estudos de Coortes , Creatinina/urina , Fator 15 de Diferenciação de Crescimento , Estudos Retrospectivos , Toxinas Urêmicas , Progressão da Doença , Insuficiência Renal Crônica/complicações , Taxa de Filtração Glomerular , Biomarcadores , Rim/fisiologia
7.
Nihon Yakurigaku Zasshi ; 158(4): 319-325, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37394553

RESUMO

Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Specific remedies are needed for preventing Type 2 diabetes which causes significant changes in an array of plasma metabolites. By untargeted metabolome analysis, phenyl sulfate (PS) increased with the progression of diabetes. In experimental diabetes models, PS administration induces albuminuria and podocyte damage due to the mitochondrial dysfunction. By clinical diabetic kidney disease (DKD) cohort analysis, it was also confirmed that the PS levels significantly correlate with basal and predicted 2-year progression of albuminuria. Phenol is synthesized from dietary tyrosine by gut bacterial-specific tyrosine phenol-lyase (TPL), and absorbed phenol is metabolized into PS in the liver. Inhibition of TPL reduces not only the circulating PS level but also albuminuria in diabetic mice. TPL inhibitor did not significantly alter the major composition, showing the non-lethal inhibition of microbial-specific enzymes has a therapeutic advantage, with lower selective pressure for the development of drug resistance. Clinically, 362 patients in a multi-center clinical study in diabetic nephropathy cohort (U-CARE) were analyzed with full data. The basal plasma PS level significantly correlated with ACR, eGFR, age, duration, HbA1c and uric acid, but not with suPAR. Multiple regression analysis revealed that ACR was the only factor that significantly correlated with PS. By stratified logistic regression analysis, in the microalbuminuria group, PS was the only factor related to the amount of change in the 2-year ACR in all models. PS is not only an early diagnosis marker, but also a modifiable cause and therefore a target for the treatment of DKD. Reduction of microbiota-derived phenol by the inhibitor should represent another aspect for developing drugs of DKD prevention.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Insuficiência Renal Crônica , Animais , Camundongos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Albuminúria/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Fenóis/uso terapêutico
8.
Adv Mater ; : e2304048, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37403808

RESUMO

The integration of flexible electronics with optics can help realize a powerful tool that facilitates the creation of a smart society wherein internal evaluations can be easily performed nondestructively from the surface of various objects that is used or encountered in daily lives. Here, organic-material-based stretchable optical sensors and imagers that possess both bending capability and rubber-like elasticity are reviewed. The latest trends in nondestructive evaluation equipment that enable simple on-site evaluations of health conditions and abnormalities are discussed without subjecting the targeted living bodies and various objects to mechanical stress. Real-time performance under real-life conditions is becoming increasingly important for creating smart societies interwoven with optical technologies. In particular, the terahertz (THz)-wave region offers a substance- and state-specific fingerprint spectrum that enables instantaneous analyses. However, to make THz sensors accessible, the following issues must be addressed: broadband and high-sensitivity at room temperature, stretchability to follow the surface movements of targets, and digital transformation compatibility. The materials, electronics packaging, and remote imaging systems used to overcome these issues are discussed in detail. Ultimately, stretchable optical sensors and imagers with highly sensitive and broadband THz sensors can facilitate the multifaceted on-site evaluation of solids, liquids, and gases.

9.
Tohoku J Exp Med ; 260(3): 181-191, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37081621

RESUMO

Mitochondrial dysfunction can cause cochlear dysfunction and accelerate noise-induced hearing loss (NIHL). NADH dehydrogenase (ubiquinone) Fe-S protein 4 (Ndufs4) is one of the subunits of mitochondrial complex I and has a role in the assembly and stabilization of complex I. However, the involvement of Ndufs4 in the pathogenesis of NIHL has not been reported. The aim of this study was to evaluate whether Ndufs4 deletion causes vulnerability to noise exposures. The wild-type (WT) and Ndufs4 knockout (KO) mice with C57BL/6J genetic background were used. Cochlear histology and hearing thresholds were assessed after noise exposure at 100 or 86 dB sound pressure level (SPL). Immunostaining showed the widespread expression of Ndufs4 in the cochlea. After noise exposure at 100 dB SPL, auditory brainstem response (ABR) threshold shifts at 4 kHz in Ndufs4 KO mice were significantly higher than that in WT mice. After noise exposure at 86 dB SPL, ABR threshold shifts, wave 1 amplitudes, and the number of synapses in the inner hair cells were not significantly different. RNA sequencing revealed the decreased expression of energy generation-related genes inNdufs4 KO mice. Ndufs4 deficiency accelerates permanent low-frequency threshold shifts after moderate noise exposure.


Assuntos
Perda Auditiva Provocada por Ruído , Ruído , Camundongos , Animais , Ruído/efeitos adversos , Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Camundongos Endogâmicos C57BL , Audição , Perda Auditiva Provocada por Ruído/genética , Perda Auditiva Provocada por Ruído/metabolismo , Camundongos Knockout , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo
11.
FASEB J ; 37(4): e22851, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36935171

RESUMO

Sarcopenia is a geriatric syndrome characterized by an age-related decline in skeletal muscle mass and strength. Here, we show that suppression of mitochondrial calcium uniporter (MCU)-mediated Ca2+ influx into mitochondria in the body wall muscles of the nematode Caenorhabditis elegans improved the sarcopenic phenotypes, blunting movement and mitochondrial structural and functional decline with age. We found that normally aged muscle cells exhibited elevated resting mitochondrial Ca2+ levels and increased mitophagy to eliminate damaged mitochondria. Similar to aging muscle, we found that suppressing MCU function in muscular dystrophy improved movement via reducing elevated resting mitochondrial Ca2+ levels. Taken together, our results reveal that elevated resting mitochondrial Ca2+ levels contribute to muscle decline with age and muscular dystrophy. Further, modulation of MCU activity may act as a potential pharmacological target in various conditions involving muscle loss.


Assuntos
Distrofias Musculares , Sarcopenia , Animais , Caenorhabditis elegans , Mitocôndrias/patologia , Músculo Esquelético/metabolismo , Sarcopenia/patologia , Distrofias Musculares/metabolismo , Cálcio/metabolismo
12.
Eur J Neurosci ; 57(6): 1018-1032, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36750311

RESUMO

ß-hydroxybutyrate (BHB) is a major ketone body synthesized mainly in the liver mitochondria and is associated with stress and severity of depression in humans. It is known to alleviate depressive-like behaviors in mouse models of depression. In this study, plasma BHB, ketogenic and glucogenic amino acids selected from the Tohoku Medical Megabank Project Community-Based Cohort Study were analysed and measured using nuclear magnetic resonance spectroscopy. The Center for Epidemiologic Studies Depression Scale (CES-D) was utilized to select adult participants with depressive symptoms (CES-D ≥ 16; n = 5722) and control participants (CES-D < 16; n = 18,150). We observed significantly reduced plasma BHB, leucine, and tryptophan levels in participants with depressive symptoms. Using social defeat stress (SDS) mice models, we found that BHB levels in mice sera increased after acute SDS, but showed no change after chronic SDS, which differed from human plasma results. Furthermore, acute SDS increased mitochondrial BHB levels in the prefrontal cortex at 6 h. In contrast, chronic SDS significantly increased the amount of food intake but reduced hepatic mitochondrial BHB levels in mice. Moreover, gene transcriptions of voltage-dependent anion-selective channel 1 (Vdac1) and monocarboxylic acid transporter 1 (Mct1), major molecules relevant to mitochondrial biogenesis and BHB transporter, significantly decreased in the liver and PFC after chronic SDS exposure. These results provide evidence that hepatic and prefrontal mitochondrial biogenesis plays an important role in BHB synthesis under chronic stress and in humans with depressive symptoms.


Assuntos
Aminoácidos , Corpos Cetônicos , Humanos , Camundongos , Adulto , Animais , Ácido 3-Hidroxibutírico/metabolismo , Estudos de Coortes , Modelos Animais de Doenças
13.
Redox Biol ; 60: 102624, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758466

RESUMO

NF-E2-related factor 2 (NRF2) plays a crucial role in the maintenance of cellular homeostasis by regulating various enzymes and proteins that are involved in the redox reactions utilizing sulfur. While substantial impacts of NRF2 on mitochondrial activity have been described, the precise mechanism by which NRF2 regulates mitochondrial function is still not fully understood. Here, we demonstrated that NRF2 increased intracellular persulfides by upregulating the cystine transporter xCT encoded by Slc7a11, a well-known NRF2 target gene. Persulfides have been shown to play an important role in mitochondrial function. Supplementation with glutathione trisulfide (GSSSG), which is a form of persulfide, elevated the mitochondrial membrane potential (MMP), increased the oxygen consumption rate (OCR) and promoted ATP production. Persulfide-mediated mitochondrial activation was shown to require the mitochondrial sulfur oxidation pathway, especially sulfide quinone oxidoreductase (SQOR). Consistently, NRF2-mediated mitochondrial activation was also dependent on SQOR activity. This study clarified that the facilitation of persulfide production and sulfur metabolism in mitochondria by increasing cysteine availability is one of the mechanisms for NRF2-dependent mitochondrial activation.


Assuntos
Fator 2 Relacionado a NF-E2 , Sulfetos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Sulfetos/metabolismo , Mitocôndrias/metabolismo , Cistina
14.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835209

RESUMO

N-acetylcysteine (NAC) is an antioxidant that prevents tumor necrosis factor (TNF)-α-induced cell death, but it also acts as a pro-oxidant, promoting reactive oxygen species independent apoptosis. Although there is plausible preclinical evidence for the use of NAC in the treatment of psychiatric disorders, deleterious side effects are still of concern. Microglia, key innate immune cells in the brain, play an important role in inflammation in psychiatric disorders. This study aimed to investigate the beneficial and deleterious effects of NAC on microglia and stress-induced behavior abnormalities in mice, and its association with microglial TNF-α and nitric oxide (NO) production. The microglial cell line MG6 was stimulated by Escherichia coli lipopolysaccharide (LPS) using NAC at varying concentrations for 24 h. NAC inhibited LPS-induced TNF-α and NO synthesis, whereas high concentrations (≥30 mM) caused MG6 mortality. Intraperitoneal injections of NAC did not ameliorate stress-induced behavioral abnormalities in mice, but high-doses induced microglial mortality. Furthermore, NAC-induced mortality was alleviated in microglial TNF-α-deficient mice and human primary M2 microglia. Our findings provide ample evidence for the use of NAC as a modulating agent of inflammation in the brain. The risk of side effects from NAC on TNF-α remains unclear and merits further mechanistic investigations.


Assuntos
Acetilcisteína , Inflamação , Microglia , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Acetilcisteína/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Intern Med ; 62(13): 1995-1998, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543208

RESUMO

A 26-year-old woman developed a sudden headache, ptosis, and diplopia. Magnetic resonance imaging and angiography demonstrated a symmetrical lesion from the midbrain to the brainstem, involving the solitary nucleus and multifocal cerebral artery narrowing. Reversible cerebral vasoconstriction syndrome (RCVS) was suspected, and the patient improved after vasodilatation. Leigh syndrome was suspected due to the elevated serum pyruvate level, so mitochondrial DNA was analyzed, and an m.9176T>C mutation was detected. The final diagnosis was adult-onset Leigh syndrome manifesting as RCVS. An uncontrolled baroreflex due to a solitary nuclear lesion or endothelial dysfunction may have contributed to her unique presentation.


Assuntos
Transtornos Cerebrovasculares , Transtornos da Cefaleia Primários , Doença de Leigh , Vasoespasmo Intracraniano , Feminino , Humanos , Adulto , Angiografia por Ressonância Magnética/métodos , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Vasoconstrição , Mutação
16.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361884

RESUMO

Under stress conditions, transfer RNAs (tRNAs) are cleaved by stress-responsive RNases such as angiogenin, generating tRNA-derived RNAs called tiRNAs. As tiRNAs contribute to cytoprotection through inhibition of translation and prevention of apoptosis, the regulation of tiRNA production is critical for cellular stress response. Here, we show that RTCB ligase complex (RTCB-LC), an RNA ligase complex involved in endoplasmic reticulum (ER) stress response and precursor tRNA splicing, negatively regulates stress-induced tiRNA production. Knockdown of RTCB significantly increased stress-induced tiRNA production, suggesting that RTCB-LC negatively regulates tiRNA production. Gel-purified tiRNAs were repaired to full-length tRNAs by RtcB in vitro, suggesting that RTCB-LC can generate full length tRNAs from tiRNAs. As RTCB-LC is inhibited under oxidative stress, we further investigated whether tiRNA production is promoted through the inhibition of RTCB-LC under oxidative stress. Although hydrogen peroxide (H2O2) itself did not induce tiRNA production, it rapidly boosted tiRNA production under the condition where stress-responsive RNases are activated. We propose a model of stress-induced tiRNA production consisting of two factors, a trigger and booster. This RTCB-LC-mediated boosting mechanism may contribute to the effective stress response in the cell.


Assuntos
Peróxido de Hidrogênio , RNA de Transferência , Peróxido de Hidrogênio/farmacologia , RNA de Transferência/metabolismo , Estresse Oxidativo , Splicing de RNA , Ligases/genética
17.
Sci Immunol ; 7(76): eabm9811, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306369

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by inflammation of various organs such as skin, kidneys, bones, and brain and the presence of autoantibodies. Although the cause of SLE is not completely understood, environmental factors, genetic susceptibility, hormone factors, and environmental factors are thought to play essential roles in the pathogenesis of SLE. Among environmental factors, the microbiota are linked to the development of different autoimmune diseases. The microbiota in the nasal cavity and gut are involved in SLE development, but the influence of skin microbiota is still unclear. Here, we demonstrated that epithelial cell-specific IκBζ-deficient (NfkbizΔK5) mice showed spontaneous skin inflammation with increased abundance of Staphylococcus aureus on the skin. When S. aureus was epicutaneously applied on NfkbizΔK5 mice, NfkbizΔK5 mice developed SLE-associated autoantibodies, anti-dsDNA antibodies, anti-Sm antibodies, and glomerulonephritis with IgG deposition. Epicutaneous S. aureus application significantly increased staphylococcal colonization on the skin of NfkbizΔK5 mice with reduced expression of several antimicrobial peptides in the skin. This staphylococcal skin colonization promoted caspase-mediated keratinocyte apoptosis and neutrophil activation, inducing the interleukin-23 (IL-23)/IL-17 immune response by activating dendritic cells and T cells. Furthermore, the subcutaneous administration of anti-IL-23p19 and anti-IL-17A antibodies alleviated the systemic autoimmune response. Together, these findings underscore epithelial-immune cross-talk disturbances caused by skin dysbiosis as an essential mediator inducing autoimmune diseases.


Assuntos
Lúpus Eritematoso Sistêmico , Infecções Estafilocócicas , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal , Autoanticorpos , Inflamação , Interleucina-23 , Ativação de Neutrófilo , Staphylococcus aureus
18.
Front Physiol ; 13: 968468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060676

RESUMO

An important trait of Pacific bluefin tuna (PBT) is their ability to maintain their body temperature above the ambient temperature, which allows them to occupy a wider ecological niche. However, the size at which this ability in nature develops is unclear. Therefore, this study aimed to clarify this point by monitoring the body temperature and the surrounding ambient temperature as the fish grew. PBT with fork lengths (FLs) ranging from 19.5 to 28.0 cm were implanted with archival electronic tags and released into the ocean. Data from 41 fish were obtained (recorded body and water temperatures, light level, and swimming depth (pressure) at 30-s intervals) and analyzed to elucidate the development of the ability of PBT to maintain a high body temperature. Body temperature of a PBT (< FL of ca. 40 cm) decreased in response to a vertical movement down to cooler depths, but higher body temperatures were maintained as the fish grew. The body temperature was then continuously maintained above ambient temperatures and fluctuated independently when fish attained more than 40 cm FL. Estimation of the whole-body heat-transfer coefficient and heat-production rate indicated that the latter decreased slowly with growth, while the former decreased by one order of magnitude when tuna reached 52 cm FL. Additionally, in the daytime, the whole-body heat-transfer coefficient was significantly higher than that at nighttime. Unlike other fishes including other Thunnus species, inhabiting tropical/subtropical waters, PBT rapidly acquire higher thermo-conservation ability when young, allowing capture of high-quality prey abundant in temperate waters to support high growth rates during early life.

19.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076995

RESUMO

Mitochonic Acid 5 (MA-5) enhances mitochondrial ATP production, restores fibroblasts from mitochondrial disease patients and extends the lifespan of the disease model "Mitomouse". Additionally, MA-5 interacts with mitofilin and modulates the mitochondrial inner membrane organizing system (MINOS) in mammalian cultured cells. Here, we used the nematode Caenorhabditis elegans to investigate whether MA-5 improves the Duchenne muscular dystrophy (DMD) model. Firstly, we confirmed the efficient penetration of MA-5 in the mitochondria of C. elegans. MA-5 also alleviated symptoms such as movement decline, muscular tone, mitochondrial fragmentation and Ca2+ accumulation of the DMD model. To assess the effect of MA-5 on mitochondria perturbation, we employed a low concentration of rotenone with or without MA-5. MA-5 significantly suppressed rotenone-induced mitochondria reactive oxygen species (ROS) increase, mitochondrial network fragmentation and nuclear destruction in body wall muscles as well as endogenous ATP levels decline. In addition, MA-5 suppressed rotenone-induced degeneration of dopaminergic cephalic (CEP) neurons seen in the Parkinson's disease (PD) model. Furthermore, the application of MA-5 reduced mitochondrial swelling due to the immt-1 null mutation. These results indicate that MA-5 has broad mitochondrial homing and MINOS stabilizing activity in metazoans and may be a therapeutic agent for these by ameliorating mitochondrial dysfunction in DMD and PD.


Assuntos
Distrofia Muscular de Duchenne , Doença de Parkinson , Trifosfato de Adenosina , Animais , Caenorhabditis elegans/genética , Humanos , Ácidos Indolacéticos , Mamíferos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Doença de Parkinson/tratamento farmacológico , Fenilbutiratos , Rotenona/farmacologia
20.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955643

RESUMO

Patients with liver diseases not only experience the adverse effects of liver-metabolized drugs, but also the unexpected adverse effects of renally excreted drugs. Bile acids alter the expression of renal drug transporters, however, the direct effects of bile acids on drug transport remain unknown. Renal drug transporter organic anion-transporting polypeptide 4C1 (OATP4C1) was reported to be inhibited by chenodeoxycholic acid. Therefore, we predicted that the inhibition of OATP4C1-mediated transport by bile acids might be a potential mechanism for the altered pharmacokinetics of renally excreted drugs. We screened 45 types of bile acids and calculated the IC50, Ki values, and bile acid−drug interaction (BDI) indices of bile acids whose inhibitory effect on OATP4C1 was >50%. From the screening results, lithocholic acid (LCA), glycine-conjugated lithocholic acid (GLCA), and taurine-conjugated lithocholic acid (TLCA) were newly identified as inhibitors of OATP4C1. Since the BDI index of LCA was 0.278, LCA is likely to inhibit OATP4C1-mediated transport in clinical settings. Our findings suggest that dose adjustment of renally excreted drugs may be required in patients with renal failure as well as in patients with hepatic failure. We believe that our findings provide essential information for drug development and safe drug treatment in clinics.


Assuntos
Ácidos e Sais Biliares , Transportadores de Ânions Orgânicos , Ânions/metabolismo , Ácidos e Sais Biliares/metabolismo , Interações Medicamentosas , Humanos , Ácido Litocólico/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...